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A NOTE ON STRESS FUNCTIONS

M. STiPPES

University of Illinois, Urbana, Illinois

Abstract-Some general expressions for solenoidal stress fields are obtained from an application of the Stokes
Helmholtz decomposition as it relates to symmetric dyadics. Using these in conjunction with the Beltrami
Michell equations, the known solutions of the equations of classical elasticity are deduced.

INTRODUCTION

(1)V'S = 0

IF S is the stress dyadiet ofan equilibrated body occupying the region 11, then in the absence
of body force

in D, the interior of 11. A solution of this equation in the form

S=VxTxV (2)

where T is a symmetric dyadic, was presented by Beltrami [2]. If aD* is any closed surface
in 11, n its outer normal and r the position vector, then the resultant traction on aD* is

J n'SdQ=t*, f rx(n·S)dQ=m*. (3)
aD· aD.

When S is given by equation (2), t* = m* = 0 as a direct consequence ofStokes' theorem [3].
In other words, the resultant traction on every aD*, arising from such stress. fields, is zero.
Keeping in mind that the reductions of these integrals, via the quoted theorem, impose
some continuity restrictions on T, we conclude, that when this is the case, equation (2)
cannot represent all solenoidal dyadics. Gurtin [4] showed that if S meets equation (3)
with t* = m* = 0 for every aD* in 11, then all sufficiently smooth solutions of equation (1)
are represented by equation (2) provided aD, the boundary of D, is also smooth enough.
Recently, Carlson [5] established the same result more directly. Gurtin also provided

S = V x T x V+ V2(Vg+gV)- V(V· g)V, V4g = 0 (4)

as a representation for all smooth solutions of equation (1). His point of departure was the
identity

V4T = V x VxTx V x V+V2[V(V' T)+(T ·V)V]-VV·T 'VV (5)

By setting S = V4 T and invoking equation (1), it follows that g = V . T is biharmonic.
Clearly, a Poisson type integral for biharmonic operators guarantees the existence ofT for
reasonable S and equation (4) follows. Subsequent unpublished work of a similar nature
employing the second order identity

V2U = V X [U - (U :1)1] x V+ V(V . U) + (U . V)V - I(V .U . V), (6)

t Gibbs' notation is used throughout. For details, see [I].
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led him to
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S = V x T x V + V«p+«pV -I(V' «p), (7)

The purpose of this note is to obtain some general solutions of equation (1) through the
use of the Stokes-Helmholtz decomposition for dyadics, to relate them to equations (4)
and (5) and investigate the structure of stress functions in periphractic and multiply
connected regions. We further supply suitable forms for T whenever S also meets the
Beltrami-Michell equations.

STOKES-HELMHOLTZ THEOREM

In order to express precise requirements, we first state a theorem on the continuity of
the Newtonian potential relevant to this work which leads to smoothness restrictions in
the S-H decomposition. In all that follows d is a bounded closed domain with interior D
and whose boundary cD is sufficiently smooth.

THEOREM 1. Suppose f(P) is defined if/,d. Iff(P) hds Holder continuous m-th derivatives with
exponent IX in d, then the Newtonian potential

g(P) = -(in) t{f/R)dQ == A'[f]

has Holder continuous m +2 derivatives with exponent IX in d.

This theorem is a special case of the Holder-Korn-Lichtenstein-Giraud inequality [6Jt
and with it we can now state
THEOREM 2t. If A"+ 1 is an (n+ 1)-adic (n = 0,1, ... ) which is m+IX Holder continuous in d,
then there exists an n-adic B" and an (n + 1)-adic e" + 1 that are m + 1+ IX Holder continuous
in d, such that

(8)

in d.

This statement is a consequence of the identity V x V x % = VV '.K - V2% with
B" = V . .iV', e"+ 1 = - V X JV where.o/' is the Newtonian potential whose density is A"+ 1.

The usual phrasings of the Stokes-Helmholtz representation generally introduce Cauchy
continuity hypotheses. As a result, they have the common defect that none provide the
continuity of the function being represented that was assumed to establish the representa
tion. (See, for example, [8,9].)

THEOREM 3. If S is m +IX Holder continuous in d and symmetric, then there exists a vector s
and a dyadic U, both m + 1+ IX Holder continuous in d such that

S = Vs+sV+VxU-UcxV (9)

in d.

The theorem follows directly from Theorem 2 since in equation (8) we can choose A"+ 1

to be a dyadic A and observe its symmetric part can be assigned arbitrarily. Taking the
expression for A and forming its conjugate, equation (9) is produced.

t Private remark by Lipman Bers, Columbia University.
tOr. D. E. Carlson has informed me that this theorem along with the next two have already been presented

by Mindlin [7].
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By applying Theorem 2 to Ue we can write Ue = Vv+ V x W. Placing this into equation
(9) there results

S = V(s + V x v) + (s + V x v)V - V x (W + We) X V. (10)

Tending to the continuity conditions ofTheorem 2, we are led to

THEOREM 4. If S is m + Il( Holder continuous in A and symmetric, then there exists a vector
«1>, m+ 1+ Il( and a symmetric dyadic T m+ 2 + Il( Holder continuous in A such that

S = V«I>+«I>V+VxTxV (11)

in A.

In closing this section, we recall that ifu is the displacement field in a linear, homogen
eous elastic equilibrated and isotropic body occupying the region A, then

(12)

in the absence of body force. A, Jl are Lame's constants. If u is m+ Il( (m 2 2) Holder con
tinuous in A, then the well-known Papkovich-Neuber solution [9] can be stated in the
form

(13)

where ¢, \jJ are m+ 1+ Il( Holder continuous in A and regular harmonic functions in D.
By setting V 2v = - 4(1- v)\jJ and observing that V 2[V' v+ 2(1- v)r . \jJ] = 0, we find

that V' v+ 2(1- v)r' \jJ = h where h is harmonic. Calling 2(1- v)w = V"V[h + 2(1- v)¢] and
setting g = v+[2(1-v)/(1-2v)]w we obtain

1
2Jlu = V 2g---VV· g, V 4g = 0 (14)

2(1-v)

where g is m+ 2 + Il( Holder continuous in A and is a regular biharmonic function in D.
This is the Galerkin vector solution [10]. Equation (14) has already been obtained from
equation (13) by Mindlin [11] by a different route.

Finally in equation (14) we set V 2g = h*. Clearly, V2h* = 0 and V· g = .Jt'[V . h*] + h
where h is harmonic. Placing these expressions into equation (14) we have

1
2Jlu = h*- 2(1-v) V{.nV· h*]+h}

which can be rewritten as
1

4Jl(1-v)u = 2(1-v)h*- Vh- V%[V' {2(I-v)h*-Vh}]-
2(1- v)

Setting h = h* - __1_) Vh there results
2(I-v

2JlU = h-[!<I-v)]V.;V[V· h] (15)

where his m+1l( Holder continuous in A and a regular harmonic vector D. Equation (15) is
the Naghdi-Hsu solution [12].

SOLENOIDAL DYADICS

The representations of equations (9) and (11) in conjunction with equation (1) limit
the functional character ofthe vectors sand «1>. Beginning with equation (11), we find that S
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of this equation will be solenoidal provided

V2fj)+V'(Vfj) == VV'fj)+V2fj) = O. (16)

But this is a special case of equation (12) for which J1 = 1, A= 0, and these values of Lame's
constants imply v = O. With these observations we can offer a number of representations
for S. To begin we have
THEOREM 5. If S is m +IX (m ~ 1) HOlder continuous in A, then

S = Vfj)+fj)V+VxTxV (17)

is complete and solenoidal when fj) ranges over the solutions of equation (16) that are m + 1+ IX

Holder continuous in A and T is restricted as in Theorem 4.

To obtain Gurtin's original forms, we set v = 0, 2J1u = fj) in equation (13) and place fj)
so defined into equation (17):

S = 2V(c/>+r ·+)V -4(V+++V)+ V x T x V. (18)

Taking U = (c/> + r· +)1 in equation (6) and replacing the repeated gradient in equation (18)
by the resulting identity, equation (18) becomes

S = -4(V+++V)+41(V'+)+Vx[T+(c/>+r·+)I]xV
which is the representation of equation (7).

On the other hand, setting v = 0, 2J1g = fj) in equation (14) and substituting into
equation (17) there results

S = V2(Vg + gV) - V(V· g)V + V x T x V
which is equation (4).

Finally we note that the representation of equation (15) yields equation (7) and conse
quently nothing new.

If we employ equation (9) to describe symmetric dyadics, then on insisting S so expressed
be solenoidal, we obtain

V2s+VV·s-V·(Uc xV)=0 (19)
Since the homogeneous part of the solution s leads to the same results as in the previous
discussion, it suffices to consider a particular integral of equation (19). To this end, we recall
Kelvin's solution, [13], of the non-homogeneous form of equation (12):

s = -(in) t [(V2R)I -(t)VVR] . [V . (Uc )( V)] dQ = V x g* + solution of equation (16)

where g* = -JV[V' Uc]. Taking, for example, the solutions of equation (16) in the form
of equation (14), we arrive at

S = V2(Vg+gV)- V(V' g)V + V(V x g*)+(V x g*)V + V xU - Ucx V,

and by employing other forms of the solution of the homogeneous equation, we arrive at
results analogous to those presented.

STRUCTURE OF S IN PERIPHRACTIC REGIONS

The additive harmonic or biharmonic vectors in equations (4), (7) or (17) constitute
more generality than is necessary. Indeed, suppose that aD consists of the union of n + 1
disjoint, but individually connected surfaces, aDo, aD!, . .. ,aDn such that aD!, aD2 , • •• ,aDn

are contained in the interior of aDo. Iftr, mr(rJ is the resultant traction on aD; (i = 1, ... , n)
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(20)

where the moment mt(rj) is computed with respect to the point r; which is taken inside
aD j , we can express S in much the same way that the Kolosoffpotentials [14] are treated
in the case of unbalanced tractions on cavities in multiply-connected regions of the plane.

Since an important use of these forms occurs in the treatment of problems relative to
isotropic, linear and homogeneous elasticity, we consider the n displacement fields

161tJluj(P) = -4ttK;+[I/(I-v)]VV' [ttR;]+2Vx [mtK;]

where R; is the distance between the field point P and r; and R;K; =; 1. Ifa body with elastici
ties A, Jl occupies the region A, then the corresponding stress field due to Uj is given by

16nSj = - I[4v/(I- v)]V' [ttKj ] -4[V(ttK;)+ (ttKj)V]

+ [2/(1 - v)]V[V . (ttR;)]V + 2V[V x (mtK;)] + 2[V x (mtK;)]V.

For such fields, the resultant traction on any closed surface containing only the element
n

aD; of aD in its interior is tt, mt(r;). Consequently, the stress field S - L: S; is such that
j= 1

t* = m* = 0 for every aD* in A. According to either [4] or [5], then
n

S = L: S;+VxTxV
j= 1

(21)

is complete when the Sj are defined by equation (20) and T meets the requirements of
Theorem 4. In problems relating to continuous distributions of dislocations, it is only
necessary to consider equation (1). For such circumstances, equation (20) can be simplified
by setting v = 00.

COMPATffiLE S

IfS ofequation (1) is to represent a state of stress in an equilibrated, linear, homogeneous
and isotropic body, then the stress field must also satisfy

(1 + v)V2S +VpV = 0, p = S:I (22)

in D. V. Blokh [15] provided T of equation (2) in the form

T = (1- v)V2B+ I(V . B· V), B = Be> (23)

so as to make S compatible. M. Stippes [16] offered specific forms of T in equations (4)
and (7) in terms of g or cP so that the indicated stress field is compatible.

If we work, instead, with equation (21), then T taken as in equation (23) yields an S
which meets equation (22). In some sense T of equation (23) is analogous to the Galerkin
vector solution of equation (12). To continue this analogy we now derive two additional
representations for T :one similar to the Papkovich-Neuber and the second to the Naghdi
Hsu solution of the displacement equations of equilibrium.

As a result of equation (21), it is clearly sufficient to work with equation (2). For an S
so represented, we observe from equation (6) that

t = T:I. (24)

Since p is harmonic, equation (22) can be rewritten in the form

(1 + I')V 2T + pI = Vv+vV (25)
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where v is any smooth vector. (Equation (25) is equation (2.3) of [15J.) To solve the homo
geneous form of this equation, we note that there is a biharmonic scalar b such that p = V2b.
As a result

(1+v)T+bl = (l+v)H, H = H r , (26)

Computing p from equations (26) and (24), it follows that

(1- v)V2b = - V· H . V(1 + v):

the general solution of which can be taken as

[(1- v)/(1 + v)]b = - (!)r' (V, H) - (1- v)h,
or

[(I-v)/(I+v)]b= -JV[V'H,V]-(1-v)h*,

Consequently

T = H+[1/2(1-v)]r'(V'H)+hl

or

(27)

(28)

(29)

(30)

T = H + Ih* + [1/(1 - v)]N[V . H . V] = H* + [1/( 1- v)J V[V . H* . Vl (31)

where H* = H + Ih*. To these we could add, as noted in [15], a particular integral of equa
tion (25) of the form Vw+wV where w = [1/(1+v)]N[v]+h where h is harmonic. This,
however, contributes nothing to S.

Equations (30) and (31) may be regarded as the analogues of equations (13) and (15)
respectively. Blokh's solution can be obtained from equation (30) in the following way.
Set (1- v)V2B* = H and take the repeated divergence of this relation. From this operation,
one obtains 2(1 - v)V . B* . V = r . (V . H) - [2(1- v)/3Jh* where h* is harmonic. Calling
3H* = (h + h*)I, B** = N[H*] and B = B* + fJB** where fJ is a suitably chosen constant,
T of equation (30) assumes the form of equation (23).

Maxwell's stress functions

By taking T = Aii + Bij + Ckk in a rectangular system, it follows that equation (1) is
satisfied, and choosing H in equation (30) as H l ii+Hzii+H3kk where V 2Hi = 0, one
arrives at a representation for Maxwell's stress functions; A, B, C which gives rise to com
patible stresses. G. Morera [17] had deduced this form with h = 0 by a different argument.

Morera's stress functions

Setting T = N(ij + ji) + M(ik + ki) + L(jk + kj), one again finds equation (1) to be satisfied.
However, if one desires compatible stresses, it follows from equation (25) that if T does not
contain diagonal elements, then we must include the particular integral of the previous
paragraph. Calling T* anyone of the solutions of the homogeneous form of equation (25),
then p depends only on T* and consequently v = ui + vj +wk in equation (25) must be
such that

p = 2ou/ox = 2ov/oy = 2ow/oz.

Furthermore, if w = u'i + v'j +w'k, then

(32)

TTl = -2ou'/ox, T!2 = - 2ov'/oy, Tj3 = - 2ow'/oz. (33)
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The solution of equations (33) and (32) along with (l +v)w = N[v] +h yields a represen
tation for Morera's stress functions.
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Resume-Quelques experiences generales pour des champs de tension Ii solenoide sont obtenus par une applica
tion de la decomposition de Stokes-Helmhotz car elle se rapporte Ii des radicaux divalents symmetriques. Employ
ant cela en conjonction avec les euqations Beltrami-Michell, les solutions connues des euqations d'elasticite
c1assique sont deduites.

Zusammenfassung-Einige allgemeine Ausdriicke flir divergenzfreie Spannungsfelder werden aus der Anweridung
der Stokes-Helmholtzschen Zerlegung eines symmetrsichen Tensors erhalten. Verwendung dieser Ausdriicke
in Zusammenhang mit den Beltrami-Mitchell Gleichungen ermoglicht die Ableitung der bekannten Losungen
der klassischen Elastizitlitsgleichungen.

A6CTpaKT-nonY'leHhI HeKOTophle o6mHe BhIpalKeHHlI ilnlI lIonel!: coneHOHilanhHoro HarrplIlKeHHlI lIpH
lIpHMeHeHHH pa3nOlKeHHlI CToKc-XenMXOnhl.\a (Stokes-Helmholtz), KaK OHO OTHOCHTClI KCHMMeTpH'IeCKHM
ilHailHKaM. npHMeHlIlI HX B CO'leTaHHH C ypaBHeHHlIMH '6enbTpaMH-MH'Iena, (Beltram-Michell) BhIBOillITCSI
H3BeCTHhIe peweHHlI ypaBHeHHl!: KnaCCH'IeCKol!: 3naCTH'IHOCTH.


